2011年度完了学内共同研究

識別番号 P10

研究課題 規則配列した半導体ナノコラム結晶の成長とその物性

研究代表者 関根智幸(理工学部機能創造理工学科)

共同研究者 菊池昭彦 (理工学部機能創造理工学科)

Summary Crystal growths of semiconductor nanostructures, regularly arrayed GaN nanocolumns, nanowalls, and nanorings, have been established. Possibilities of the application to electrical and optical nanodevices have been shown in this study. Moreover, we have studied physical properties to clarify the electrical transport in the single nanocolumn and the phonon properties, in particular the surface phonons, in the nanostructures. The breakdown of the polarization selection rules in phonon Raman scattering was found in the single nanocolumn.

1. 目的

ナノコラム結晶の位置や形状を制御する結晶成長技術を完 成させる。更に、多様な形状のナノ構造の結晶成長技術を開拓 する。また、これらの基礎物性やデバイスへの応用を研究し、 ナノ構造特有の優れた物性を解明することを目的とした。

2. 研究成果

(a) 規則配列 GaN ナノコラム成長技術の確立

(0001)GaN/Al₂O₃ テンプレート基板上に厚さ数 nm の Ti 薄 膜を堆積し、ドライエッチング法で周期 400 nm - 4 μ m、直 径 100 - 550 nm の様々な開口パターンを形成して GaN を露 出させた後、基板表面を MBE 装置内で窒化し、続けて GaN ナノコラムを成長すると、基板温度 900℃近傍の狭い温度領 域において極めて良好な GaN ナノ結晶を再現性良く選択成 長できる条件を確立した。図1は、ナノホールパターン上に 開口径を変えて成長した試料の鳥瞰 SEM 像であり、開口の みに GaN ナノコラムが成長している様子がわかる。

(b) GaN ナノコラムの InGaN 発光層の発光色制御

結晶上部に InGaN 発光層を内在した規則配列 GaN ナノ コラムを成長する際に、コラム径や配列周期を変化させる ことにより、発光色を制御可能できることを見出した。こ

の現象は、隣接するコラムの遮蔽効果によってコラム側面に供給される Ga と In の分子線 量が異なることと側面から上部へ移動する際に脱離速度が Ga と In で異なることを考慮し たモデルを用いてよく説明できた。

(c) 多様な形状の GaN ナノ結晶の選択成長

GaN テンプレート上に形成した Ti マスクにナノパターンを形成することにより、多様な 形状の GaN ナノ結晶を成長できることを確認した。図2は成長したナノ結晶の例であり、 (a)六角形リング共振器、(b)ストライプ状ナノウォール、(c)直径約1 µm のリングアレイ、 (d)ナノメッシュ構造等、ナノパターン上に垂直にナノ結晶が成長することから極めて自由

図 1. rf-MBE 法で選択成長した InGaN/ GaN ナノコラムの鳥瞰

図 2. 様々な形状の GaN ナノウォール (a)六角形リング共振器、(b)ナノウォール アレイ、(c)ナノリング、(d) ナノメッシ ユ。

度の高いナノ結晶成長技術であることを示した。 (d) AlGaN/GaN ナノウォール FET の作製と評価

AlGaN/GaN ナノウォールをチャネル領域に用いる 電界効果トランジスタ(FET)構造を試作し、初期特 性を評価した。 ゲート電圧によるドレイン電流の制 御が観測され、電子デバイスへの応用が可能であるこ とを示した。

(e) GaN ナノコラムの電気伝導

GaN ナノコラム結晶は一次元的性質等、新しい電気 伝導現象を示す可能性があり、興味深い。我々はフォ トリソグラフィーを用いた方法より1本のナノコラム のオーミック電極の作成に成功し、電気伝導を研究し た。高温では不純物による活性化タイプの伝導、低温 では Mott 型の variable range hopping 伝導による温 度変化や磁気抵抗効果を観測した。更に、図3に見ら れるように、ナノ構造による高電場印加のために発生 するなだれ破壊効果の非線形伝導を観測した。

(f) 表面フォノンによるラマン散乱

固体と外界(空気)の境の界面には局在する表面フ オノンポラリトンが存在する。ナノ構造では表面フォ ノンが格子力学や伝導現象に重要な役割を果たす。図 4 に示すように、GaN ナノウォールや規則配列をした GaN ナノコラム、GaN ナノリングにおいても表面フォ ノンを観測した。GaN ナノウォールに比べて、表面フ オノンの幅が広く、低周波数側にテールを引いている。 ナノウォールのように板状の結晶を持つ場合には表 面フォノンの観測される周波数は誘電関数 ε(ω)=-1 の時の値に決まるのに対し、円柱構造を持った結晶の 時には動径方向の波数が量子化された表面フォノン になることが分かった。

図 3.1本の GaN ナノコラム結晶の非 線形伝導。

図 4. 規則配列をした GaN ナノコラム、 GaN ナノリング、GaN ナノウォールの表 面フォノン (SP) からのラマンスペクト ル。

(g) 1本の GaN ナノコラムの顕微ラマン散乱

ラマン散乱により、ナノ結晶に現れるナノ構造特有のフォノン物性やラマン効果の光散乱過 程を探究した。顕微ラマン散乱の測定系を構築し、1本の GaN ナノコラムにおける顕微ラマ ン散乱測定を行った。GaN ナノコラムのコラム半径が試料内の入射波長に対して2倍程度に なると、バルク結晶のフォノン・ラマンスペクトルの偏光選択則の破れが観測された。

3. まとめ

多様な形状の GaN ナノ構造の選択成長が確立され、光や電子デバイスにも応用可能であることを示した。また、GaN ナノコラムの電気伝導特性を解明し、ナノ構造の表面フォノンについてもラマン散乱より明らかにした。更に、GaN ナノコラムの光散乱では、コラムの半径が入射波長と2倍程度になるとバルク結晶の選択則も破れることを見出した。