

Database

第8回:SQL言語(データベース操作)

上智大学理工学部情報理工学科 高岡詠子

No reproduction or republication without written *permission*. 許可のない転載、再発行を禁止します

2011/12/1

Schedule

	日程	内容
第1回	10月6日	ガイダンス、データベースとは?
第2回	10月13日	三層スキーマ,データモデル,データベース設計のための仕組み
第 3回	10月20日	概念設計:概念モデルとERモデル,論理設計へ
第 4回	10 月 27日	論理設計と正規化
第 5回	11月10日	正規化.物理設計
第6回	11月17日	物理設計
第7回	11 月 24日	SQL 言語(データベース定義)
第8回	12月1日	SQL 言語(データベース操作)
第9回	12 月 8日	SQL
第 10回	12 月 15日	SQL 言語(ビュー定義など)
第 11回	12月22日	データベース管理システム:トランザクション処理
第 12回	1 月 5日	データベース管理システム:同時実行制御, 排他制御
第 13回	1 月 12日	同時実行制御,排他制御,デッドロック
第 14回	1 月 19日	データベース技術動向、 リレーショナル代数、 まとめ
2011/12/1	©2011	Eiko Takaoka All Rights Reserved. 2

今日の授業

→データベース操作

2011/12/1

→データベースの参照 →データベースの登録・変更・削除

©2011 Eiko Takaoka All Rights Reserved.

3

SQLがRDBMSに対して持つ制御機能

- ◆ データベース定義
 - → データを格納すべき表の定義、ビューの定義
 - → 複数の表を関連づけるための規約や制約
 - + データベースのアクセス権などを定義
- ◆ データベース操作
 - →表に対するデータの登録・修正・削除
 - → 複数の表の結合、ビュー表の作成などの集合操作
 - → 表中のデータ検索
- →トランザクション管理
 - → 回復や同時実行のための最小単位として保証される一連の処理の操作

2011/12/1

2011/12/1

列名称(属性)	受注番号	得意先コード	商品コード	受注個数	納品日
データ型	INT	CHAR	INT	INT	DATE
最大データ長	4	5	3	5	7
キー種	РК	FK1	FK2		
一意性					1
依存先		得意先表	商品表		
入力必須	NN1	NN2	NN3		
平均データ長	4	5	3	2	7

CREATE TABLE juchuTable

orderID shopID itemID orderNum shipDate UNIQUE(

(

2011/12/1

```
CREATE TABLE
                    shopTable
   shopID
    shopName
 );
CREATE
                   itemTable
         TABLE
l
  itemID
  itemName
  price
);
```

得意先表(shopTable)

列名称(属性) 得意先コード 得意先名 データ型 CHAR CHAR 最大データ長 10 5 PΚ キー種 入力必須 NN1 NN2 2011/12/1 ©2011 Eiko Takaoka All Rights Reserved.

商品表 (item Table)

商品コード	商品名	商品単価
INT	CHAR	INT
3	20	8
РК		
NN1	NN2	NN3

7

今日の授業

→データベースの登録・変更・削除

2011/12/1

SQLがRDBMSに対して持つ制御機能

- → データベース定義
 - → データを格納すべき表の定義、ビューの定義
 - → 複数の表を関連づけるための規約や制約
 - → データベースのアクセス権などを定義
- ◆ データベース操作
 - → 表に対するデータの
 - → 複数の表の結合、ビュー表の作成などの集合操作
 → 表中のデータ
- +トランザクション管理
 - → 回復や同時実行のための最小単位として保証される一連の処理の操作

2011/12/1

テーフルの中身を確認:select

* from juchuTable;

そのテーブルに登録されているすべての 情報を見ることができる便利なコマンド _____juchuTable; →そのテーブルの属性を知るためのコマンド

2011/12/1

テースルの名前の変更など

- → テーブルの名前の変更
- → mysql> _____ テーブル名 _____ 新しいテーブル名;
- → カラムの型を変える
- → mysql> ____ テーブル名 ____ カラム名型 ~~~
- mysql> ALTER TABLE jyuchu _____ orderID char(3);
- → カラムの名前変更
- → mysql> ALTER TABLE テーフル名 CHANGE 古いカラム名 新しいカラム名 型;
- mysql> ALTER TABLE jyuchu _____ orderID oID char(3);
- → カラムを削除する
- ★ mysql> ALTER TABLE テーブル名 _____ 削除するカラム名;

データの登録

テーブル名 (カラムの内容):

insert into juchuTable values(102,"a10",5,3,091112); insert into juchuTable values(103,"a10",50,1,091113); insert into juchuTable values(104,"a11",543,2,091112); insert into juchuTable values(105,"a11",115,7,091113); insert into juchuTable values(106,"a12",45,10,091112); insert into juchuTable values(107,"a13",34,2,091112); insert into juchuTable values(108,"a13",60,1,091113);

2011/12/1

2011/12/1

```
CREATE TABLE student
 );
 CREATE TABLE subject
 );
insert into student values("a0812343", "上智太郎", "千代田区紀尾井町7-1");
```


subjectID	subjectName	credit
lct90274	データベース	4
lct90250	情報リテラシー	2
lct90009	科学技術英語	4
lct90113	人間学	4
lct90320	社会と情報	4
lct90100	体育	4
lct90110	英語	2
lct90987	コンピュータプログラミング	2

insert into subject values("lct90274", "7-9x-2",4);

2011/12/1

テータの更新

★ 表名 カラム名 = 値, カラム名 = 値 条件;

 update subject set credit=credit+2;
 update subject set credit=credit-2 where credit=2;

2011/12/1

+テータのみの削除

→ delete from テースル名 where 条件;
→ delete from subject where subjectID="lct90987";
→ テータだけでなくテースルごと削除する

2011/12/1

©2011 Eiko Takaoka All Rights Reserved.

テーフル名:

今日の授業

→データベース定義 →データベース操作 →データベースの参照 →データベースの登録・変更・削除

2011/12/1

©2011 Eiko Takaoka All Rights Reserved.

20

♦ select 文

カラム名1, カラム名2, ・・・・ 抽出条件 グループ化を行う グループ化を行ったときの抽出条件 並べ替えを指定する

2011/12/1

◆すべての列を抽出する() ◆subject表からすべての列を表示

◆特定列の抽出() ◆select 列名(、で区切る) from テーブル名; ◆subject表から2つの列を選択して表示 ◆ _________ subjectID, subjectName ________ ◆算術表示もできる ◆select credit * 4 from subject;

2011/12/1

◆ 条件付き参照 select カラム名(、で区切る) from テーフル名 where 条件

↓ iuchuTable表からshopIDがa10である行を抽出する

◆ subject表からcreditが2を超える科目名subjectNameを 抽出する

→ juchuTable表からshopIDがa10である行の商品コードと受
注個数を抽出する

2011/12/1

mysql> desc shopSale;

++++++++
Field Type Null Key Default Extra
shopname char(20) NO NULL sales int(10) YES NULL date date NO NULL
++ mysql> desc netSale; ++
Field Type Null Key Default Extra
sales int(10) YES NO NULL date date YES NO NULL
2011/12/1 ©2011 Eiko Takaoka All Rights Reserved.

shopSale

shopname	sales	date
紀尾井町	450,000	11/1
高輪	320,000	11/3
赤坂	876,600	11/5
品川	438,000	11/3
紀尾井町	200,000	11/10
赤坂	120,000	11/13
赤坂	40,000	11/20
高輪	450,000	11/3
品川	220,000	11/5
高輪	110,000	11/18
品川	220,000	11/15

netSale

sales	date
120,000	11/1
150,000	11/7
250,550	11/13
320,000	11/20

2011/12/1

* create table shopSale(

* create table netSale(

2011/12/1

);

◆重複行を除外する ◆shopSale表からshopNameに関して重複行を除外して表示させる

2011/12/1

→テーブルをソートして表示 →shopSale表を日付順に並べ替えする

select * from テーブル名 カラム名 (,で区切る);

◆カラム名を変えて表示 select shopName as "店舗名" from shopSale;

2011/12/1

関係演算子と論理演算子

select * from rishu where rishunendo>=2009 and subjectID='lct90274';

関係演算子

=	左辺が右辺と等しい
<	左辺が右辺より小さい
<=	左辺が右辺以下
*	左辺が右辺より大きい
>=	左辺が右辺以上
<>	左辺と右辺が等しくない

論理演算子

AND	かつ
OR	または
NOT	否定

- ◆ SUM() 指定条件によって得られた列の値の合計を求める関数
- → AVG() 指定条件によって得られた列の値の平均値を求める関数
- → MAX() 指定条件によって得られた列の値の中で最大値を返す関数
- → MIN() 指定条件によって得られた列の値の中で最小値を返す関数
- + COUNT()
 - 指定条件によって得られた表の基数、すなわち行数を求める関数

2011/12/1

集合関数を使ったselect文

→ グループ化を行う

- → shopSale表においてshopnameごとの売り上げを表示 させたいとき
 - select shopname, sum(sales) from shopSale
 group by shopname;
- ◆ 関数の値に条件をつける(whereは使えないから) select shopname, sum(sales) from shopSale group by shopname having sum(sales) > 1000000;

集合関数を使ったselect文

→重複行を除外する

→ shopSale表からshopNameに関して重複 行を除外して表示させる

→数える

→異なる列の値を数える

select count(distinct shopName) from
shopSale;

2011/12/1